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LAMINAR HEAT TRANSFER TO A BLUNTED WEDGE*
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(Received 25 November 1968 and in revised form 24 July 1969)

Abstract—An analytic solution which describes accurately the energy field in the boundary layer of a
blunted wedge with constant wall temperature is provided. For the nose region, the solution is represented
by a power series in the streamwise coordinate o with coefficient functions expressed as linear combina-
tions of universal functions. For flow far from the nose, there is constructed an asymptotic series which
contains eigenvalue terms. Since the boundary layer originates as a two-dimensional stagnation-point
flow and approaches asymptotically a Falkner-Skan flow with § # 1, the present analytic solution cor-
responds to a nonsimilar case for both the velocity and energy field which may be suitable for the assess-

ment of the accuracy of numerical and approximate analyses.

NOMENCLATURE

the radius of the blunted nose;
the ratio of density viscosity product,

C = pu/pp.;
modified stream function such that
fo = ufu;

Goertler’s universal functions;

the coefficient functions of the power
series for f;

the coefficient functions of the asympto-
tic series for f;

the ratio of stagnation enthalpy, g =
hy/hs,.;

normalized stagnation enthalpy, ¢ =
(9 — 9/l — 94);

universal functions for the energy
equation ;

the coefficient functions of the power
series for g ;

the ratio of stagnation enthalpy after
Euler transformation ;

* This paper was taken from a part of the author’s
dissertation submitted to the Faculty of the University of
California at San Diego in partial fulfillment of the re-
quirement for the Ph.D. degree (1968).

t Present address: Reentry Technology Directorate,
Avco Systems Division, Wilmington, Massachusetts.
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the coefficient functions of the power
series for G;

the coefficient functions of the asympto-
tic series for g;

stagnation enthalpy;

the constants in front of the eigenvalue
terms of the asymptotic series for f;
eigenfunction for energy equation;
eigenfunction for velocity equation;
normal coordinate ;

streamwise coordinate ;

the constants in front of the eigenvalue
terms of the asymptotic series for g;
velocity component in the streamwise
direction ;

velocity component in the normal direc-
tion;

a constant to normalize the velocity of
inviscid flow ;

transformed streamwise variable after
Euler transformation ;

the real part of Z, cf. Fig. 1;

the real part of z, cf. Fig. 1;

the imaginary part of Z, cf. Fig. 1;

the imaginary part of z, cf. Fig. 1;
complex variable before conformal map-
ping, cf. Fig 1;
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z, complex variable after conformal map-
ping, cf Fig. 1.

Greek symbols
B,  pressure gradient parameter,
B = (2s/u,)(du,/ds);
B.. the coefficients of the power series for f3;
ve €igenvalues for the energy equation
n, transformed normal variable, cf. equa-
tion (7};
A eigenvalues for the velocity equation:
u,  viscosity coefficient;
£, the imaginary part of {, cf Fig 1
p,  density;
o, transformed streamwise variable, cf
equation (3);
{, intermediate complex variable during
conformal mapping, cf. Fig. 1;
f,  the real part of {, cf Fig. L.

Subscripts

e, refers to the conditions in the external
flow;

w. refers to the conditions at the body
surface;

0, refers to quantities near the stagnation
point;

oo, refers to quantities far from the stagna-
tion point.

1. INTRODUCTION

LaMiNAR flows in which the velocity and energy
distributions are described by similar solutions
can be computed with great accuracy in terms
of numerical solutions to a set of ordinary
differential equations. More general, nonsimilar
flows are described by partial differential equa-
tions which may be solved by various methods
with various degrees of accuracy. At one end
of an accuracy spectrum we have direct nu-
merical integration which in principal is exact
and at the other end we have momentum
integral methods; series and other methods are
intermediate thereto. It would be convenient
to have analytic solution of high accuracy to
provide gages against which the accuracy of
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various methods can be judged. This point of
view has been exploited for velocity distribu-
tions in laminar boundary layers by Van Dyke
[1] who provides such a solution for the flow
about a parabolic slab and by Chen et al. [2],
who provide such a solution for the flow about
a blunted wedge.

Our purpose here is to present an accurate
solution to the energy distribution for the case
of the blunted wedge treated in [2] The velocity
distribution is therefore assumed given by [2]
and we need present here only those aspects of
direct relevance to our calculation of the energy
distribution,

The boundary layer on the blunted wedge
starts from a two-dimensional stagnation point
(f = 1) and accelerates in the streamwise direc-
tion so as to approach a constant ff # 1 de-
pending on the wedge angle. Thus the initial
and asymptotic solutions for both the velocity
and energy distributions are similar. At inter-
mediate stations we are clearly dealing with a
nonsimilar flow. The flow may be considered
to be either incompressible or compressible but
adiabatic with unity Prandt! and Lewis numbers,
or more particularly with a nearly constant
stagnation enthalpy and composition. Although
our solution is for constant wall temperature,
the approach may be readily extended to the
case of a variable wall temperature.

We carry out two separate calculations. In one
we extend the Goertler series method [3] to
the solution of the energy equation near the
stagnation line. In the second we assume this
series solution has been extended sufficiently
downstream so that an asymptotic solution
based on the eigenfunctions of Chen [4] may
be applied to give the approach to the far
downstream similar solution.

2. ANALYSIS
Consider a steady laminar flow at a high
Reynolds number. For simplicity let the flow be
incompressible, passing a semiinfinite, sym-
metric, blunted wedge with constant wall tem~
perature.
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FiG. 1. Generation of the inviscid flow past the blunted wedge by conformal mapping (from [2]).

The inviscid flow

For completeness we review briefly the
analysis of [2] providing the description of the
inviscid flow which is found by the conformal
mappings sketched in Fig. 1. The {-z transforma-
tion involves the parameter B, which cor-
responds to the usual Falkner-Skan parameter
for wedge flows (cf. Schiichting [S]). For 8, =0
the wedge degenerates to a parabolic body (cf.
Van Dyke [1]), the numerical analysis per-
taining to the boundary layer will be carried
out below for §,, = 3, i.e. for a blunted wedge
with a 45° haif-angle.

The velocity on the surface u, is found to be
given by

b= VEL+ & 0792 ()

The distance along the surface from the x-axis
is also found to be expressed in terms of & in
the differential form

Bu)al(l + yi=ro2,

=(1- ]

6

For the boundary-layer calculation we shall

introduce a transformed streamwise coordinate
o related to s according to

6 = (Va)~* gu, ds 3

and the usual Falkner-Skan pressure-gradient

parameters § = (20/u.) (du/do) which in these

flows varies with ¢. Equations (2) and (3) lead
to the simple relation between ¢ and £, namely,

o =1~ B)EN2), @
and thus to

1+ B¢

P=~ve

&)

The boundary layer equations

The momentum and energy equation for the
boundary layer with the ratio of density viscosity
product C = (py/p.u.) =1 and the Prandtl
number Pr = 1 can be written as

fm +ﬂ;ﬂ' + ﬁ(a)(l —fi) = 20(.f;wfn "fafmy) (6)
subject to the boundary conditions

f(O',O) =fn(s>0) =0

fle, 0) =1
and
Im + S8y = 20014, — f.2y) Y]
with
g(ﬂ', 0) = Q(O', CO) =1
where
_Plun
= QuVao)

= (g - gw)/(l - gw)9
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and f, is the ratio of streamwise velocity com-
ponents, u/u,.

The heat transfer rate at wall can be cal-
culated from the value of (g,),, which we shall
use as the measure of the accuracy achieved
in the subsequent calculation.

Series solution for nose region*

At the nose of the wedge, say s = 0, we have
a two-dimensional stagnation point and the
velocity and energy fields are described by the
similar solutions of f; and g, satisfying

o +fofo+U—fH=0 (8)
with
Fol0) =150 =0, [folo)=1
and
o +fodo =10 9)
with
§o0 =0,  goleo) =1

The numerical solution of equation (8) can
be found, e.g in 8] yielding the wall value
£4(0) = 1:2326, while the solution of equation
(9) can be expressed in an integral form,

{expl— [ fu@ di1dn
doln) = % -
05 expl — | folif) diil d#f

0

(10)

which gives §,(0) = 0-57047.

* A reviewer pointed out that Froessling [6] and Tifford
[7] have constructed the universal functions of the tempera-
ture field in the physical coordinates s and n, which can be
considered as an extension of Blasius series (cf. Schlichting
[5]). Though we would expect to be able to convert the
numerical values of the universal functions of Blasius
series to those of the Goertler series, the labor to do so
leads us to prefer our present, direct calculation in o, n
variables. The boundary layer equations in ¢ and # variables
can cover more cases, e.g. axi-symmetrical flow, adiabatic
compressible flow and so on.
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In the region near the stagnation point, we
express f, f and g as the series in ¢ such that

B~1+ Bio+ Bro” + ... (11)
fm) = foln) + fio + fr6° + ... (12)
s, m =~ ol + g0 + g0 + ... (13)

where f8,’s can be obtained from equation (5)
for the numerical analysis carried out below,
and f,’s can be expressed in terms of the given
B, coefficient and of the Goertler’s universal
functions f ... (cf. [3]) that

L= ﬂlfx
fo=Bifi + Baofa
fs =B fi1s + BiBafiz + Bafs
fe BBt i + BiBafisz + BiBsfis
+ B3fas + Bods
fs =B firrs + BiBafinia + BiBsfiss
+ BiB3fiaz + BiBafra + BaBsfas

+ ﬁ5f5~

Substitution of equations (12) and (13) into
equation (7) leads to a hierarchy of equations
for the g, functions. If, as an abbreviation, we
define the differential operator

Lig) = g" + fog' — 2Kf 09,

we have the following equations for the func-
tions g,

Lg,) = =390
Ly(g,) = —3f1g1 — 2do + 2194
Li(gs) = —3f19> —5f291 — o
+ 4f'1g, + 2(%4,
Lygs) = —3f195 — 529> — 7391
~ 9o + 6f 19y + 4292 + 2391
Ls(gs) = —3f1g4 — 5295 — 39>
~ 991 — 11fs80 + 8194 + 6/20;
+ 4f 59, + 249,

Following the same approach as Goertler [3],
we express the g, functions in terms of a series

(14)

(13)
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of universal functions which are defined as We have the same boundary conditions for all

follows g...,namely

= B4y 9...0=4...(0)=0.
g: = P21 + Bads The numerical technique used to solve equations

o in (17) is essentially the same as that used by
g3 = Bidsin + BiBadiz + B3ds Goertler [3]. A brief outline is given here. Let
9s = Btd1111 + BiB20112 +2ﬂ1ﬁ3913 (16) G..=Ch... M+ 5.4,

+ B3022 + Bada R .
s 5 where §. . . satisfies

gs = Bidsi11r + BiP2b1112 Lg...)=

+ P3Bsbi11s + B1B3122 4...0)=0 ) (0) = 1:

+ B1Badia + BaB3d2s + Bsis. 0 =0, 4.0 =1;

Substitution of (14) and (16) into (15) leads to 9+ » satisfies
the following differential equations for the Lig...)=R
functions 4. .. (n). g...0=g.. 0=
k=1:L(@)= -3,
k=2:Ly@) = =31y — 5Ti.do + 2714,
Ly(@,) = —5286
k=3:Ly@110 = —3/1811 — 1181 — Thnsde + 410, + 2f119,
Li@12) = =185 — s — Thallo + 4192 + 249,
Ly(@s) = —fsd6
k=4:L@1110) = =311 = S1dis — Thadi — Wiinado + 6F18111 + 410010 + 2 1100s
Li@112) = =301z — 51185 — 5H811 — Moy — Y1206 + 6f181, + 4110,
Lu@13) = =385 — 185 — 1386 + 67145 + 230, + 47503 + 21l
Li@22) = =522 — %220y + 420>
Ly(ga) = —‘9f4§6
k=5:Ls(@11111) = =311 = 5110101 — Thiadin — Vinnadi = Whindo + 8181111
+ 611011y + 411011 + U a111ds
Ls(@1112) = —3.?1@'112 - Sfugrxz - szgiu - 112911 — 7)?111@'2 - 91?11233
— 11111286 + 8718112 + 611812 + 628111 + 411002 + 21120,
Ls(@113) = =318's — 1185 — Msdis — s — 1f11506 + 81015 + 61105
+ 413011 + 2130,
Ls(g122) = —3f1ﬁ'22 - 5172.‘7’12 - 7f12g'2 - 9f22@1 - 11]?122@6 + Sjllgzz + 6f’zé12
+ 47128, + 2.0,

Ls(@:4) = ~3f10s — 9udi — Wil + 8194 + 2720,
L(d23) = ~ 52y — 1303 — 113386 + 6759 + 4734,
Ls(@s) = —11f5ds. an
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with R..., the forcing function of the cor-
responding equation in (17); and C is a constant
to be determined from the boundary condition
that

0=9...(00)=Cd...{0) +§... )

Extensive tables of these §...(s) functions
for g,, where n = 1, 2, 3,4 and 5, were calculated
and are available upon request from the author.
In the present paper, we list only the numerical
values of §'...(0) in Table 1.

Table 1. The numerical values of § . .. "(0)

g..."0 g...'0

0 0-57047 5 0-06030

1 006219 23 —0-02600

2 006354 14 —002721

11 ~0-01669 122 0-01319

3 0-06283 113 001360

12 —0-03083 1112 —0-:00767

111 0-00550 11111 0-00096
4 0-06162
22 —0-01398
13 —0-02884
112 001477
1111 —0-00215

Since from our wedge flow the coefficients
B, are known from (), we may compute the
first 5 g, functions from (16) and from (13)
the stagnation enthalpy in the boundary layer
to some finite ¢, less than the radius of con-
vergence of the series in ¢ and determined by
the selected accuracy requirements on some
boundary layer property, e.g. on (g,),-

Extending the series solution

In order to extend the radius of convergence,
as well as to increase the accuracy of the series,
we recast the series in (13) by means of the
Euler transformation. Introducingw = ¢/(q + o)
so that g(o, 1) becomes G(w, ) where

G(w,n) = doln) + Zl w'G,(n) (18)

K. K. CHEN

G =4qg,

G, = qg, + 4’9,

G; =qg;, +29° + q°g;

Gs = q9: + 39°g, + 3¢°9s + q*g,

Gs = qg1 + 44°g, + 6479 + 4q*g,
+4°gs.

The determination of the value of  is ambiguous :

e.g it may be selected in such a way that the

series in (18) converges as fast as possible, e.g.

[9] It may also be determined on the basis

of an estimation of the radius of convergence

of the series. With g selected we may in some

cases employ the technique of Shanks [10] for

accelerating the convergence of a sequence of
partial sums.

(19)

Asymptotic series for the stagnation enthalpy
Sfuar downstream

In order to examine how the stagnation
enthalpy will approach a similar solution as
¢ — <o, asymptotic expansions to the solutions
of equations (6) and (7) with respect to large o
are employed. The asymptotic expansion to
equation (1) has been presented in [2] as

f(S’ ’7) ~ foo(n) + Fl(?])o'—l -+ KlNltn)o.').l/l
+ Fy()o~2 + K,Ny(m)o~#?
+ G e~ L Fujo™> + ... (20)

where f, is the solution of Falkner—Skan equa-
tion with B, = f(co0). In a similar manner we
write the asymptotic expansion to equation (7)
as

gls. M) ~ g + TiM 0772 + G(n)a ™!
+ Cléhlzorlllz + Tlé(ll/zHlaﬂ(lﬂ'\/Z)
+ TeM,e™ 72 + Gy ™2 + ... (21)

Substitution of equations (20) and (21) into
equation (7) and collection of like powers of
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o yield the sequence of equations
Jo + Judo =0
with g,(0) = 0, g (0) = 1;
MY + f My + y f( My =0
with M ,(0) = M,(x) = 0;
Gl + fmG1 =Fif
with G,(0) = G, (o) = 0;

Grz + JoGiyz + 1 fGay2
= (4, — DNy,

with G,,200) = G,,5(c0) = 0. (22)
The first function g, can be expressed in an
integral form as in (10) with the substitution of
[+ for fo. The second function M, is the first
eigenfunction in [4] with / = f,. Substitution
of F, = @)1 — B (1f% — fo) as it is indi-
cated in [2] into (22) leads to an exact solution
for G, ie. G, =41~ B.) ng.. As to the
fourth function G,, ,, we cannot find a general
exact solution except for §.. = 0. In this special
case, we have 1, =0 and Nny=(nf, —
Jo) f'5(0) so that 611/2 = 195/ f(0). How-
ever we can find solutions for other functions in
(21) numerically in a straightforward manner.
The constants Ty, T, ..., in (21) depend upon
the details of the flow near the nose as discussed
below.

3. NUMERICAL RESULTS FOR 8, =}

Consider a blunted wedge of 45° half-angle,
ie. B, = 3 From the substitution of numerical
results in Table 1 to equations (16) and (13),
we find

g,(s,m) = 0-:57047 — 0124380 + 0-441594>
— 1-56145¢° + 5-58451¢* — 20-217766° . . ..
(23)
The next step is to employ the Euler trans-
formation w = a/(g + o) in order to increase the

radius of convergence of (23). The appropriate
value of the constant g depends on that radius

5719

which can be assumed to be or expected to be
the same with that of velocity filed in [2], ie.
g = % In terms of w, equation (23) becomes
G,(w,0) = 0-57047 — 0-03110w — 0-00350w?
— 0:00029w* + 0-00033w* + 0-00043w° (23a)
With w =1, which corresponds to ¢ — oo,

equation (23a) gives the sequence of partial
sums of

0-5394 0-5359 0-5356 0-5359 0-5363,

compared with the exact similar solution for
6 — 0, g,(0) = 05390 [4]) We thus see that
the Euler transformation applied to five terms
of the series solution yields the asymptotic
value of g/,(0) within 0-5 per cent.

In order to determine the nature of approach
of g,(a, 0) to its asymptotic value, we find the
numerical value of its first 3 terms of (21), i.e.
3,(5,0) ~ 05390 + T,6~ 826! 4 0067375 *

+ 0140, (24)

The numerical value of T, can be approximately
estimated by the consideration of the power
series (23a) for g,{(o, 0). The procedure in outline
is as follows: equation (24) can be rewritten
in terms of (1 — w) as

(g'”)w ~ 0-5390 + 50-8261 Tl(l - W)0-8261

+ 02695(1 — w) + O[(1 — w)!'546].  (25)

Subtraction of equation (25) from equation
(23a) leads to

50~8261(_ Tl)(l _ w)0~8261
=0-2380 — 0-2384w + 0-00350w? + 0-00029w>
+0-00033w* + 0-00043w°

+0-00042w* + 0-00010w>.

Factoring 0-2380 from the right-hand side and
raising both sides to (0-8261)~* power, we obtain

5(__71)1-2105(1 - W)
= (02380)'21%%(1 — 1:2125w + 0-1456w?
+ 00314w* + 0-0117w* + 0-0056w> + .. ).
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We once again rewrite the right-hand side in
powers of (1 — w) and find

S(—TYU219%(1 — w)

= (0-2380) 2195[(1 — 1-2125 + 01456

+00314 + 00117 + 00056 + . )

+ (1 — wy(1:2125 — 0:2912 — 00943 — 0-0467
— 00282 — ..) + 01 — w)]

The terms in the first 2 coefficients decrease
fasterthan 1/n? Applying the summationformula
of Shanks [10] to these two coefficients, we
obtain —001 and 0-64. This numerical results
seems to agree with our expectation that the
first coefficient indeed converges to zero. There-
fore, the second coefficient can be employed to
estimate 7, ie.

064 0-8261
Tl = —-02380 —g- =

—0-044.
We thus conclude that the heat transfer rate far
downstream is given by

G ~ 05390 — g7 08261 1+ 0067457}
+ 0 (O.~1~546)‘

We thus see that the series solution developed
for the nose region, extended by means of the
Euler transformation, and the asymptotic solu-
tion far downstream from the nose provide a
gage for the assessment of the accuracy of
numerical and/or approximate solutions of the
energy field on a blunted wedge and comple-
ment the corresponding solutions for the velocity
field given in {2].
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TRANSPORT DE CHALEUR LAMINAIRE A UN DIEDRE ARRONDI

Résumé—Une solution analytique est fournie, qui décrit avec précision le champ d’énergie dans la couche
limite d’un diédre arrondi avec une température pariétale constante. Pour la région du nez, la solution est
représentée par une série en puissances de la coordonnée le long de I’écoulement o, avec des coefficients
variables exprimés comme des combinaisons linéaires de fonctions universelies. Pour I’écoulement loin
du nez, on a construit une série asymptotique qui contient des valeurs propres. Puisque la couche limite
commence comme un écoulement autour d’un point d’arrét bidimensionnel et approche asymptotiquement
d’un écoulement de Falkner-Skan avec f§ # 1, la solution analytique actuelle correspond & un cas en
non-similitude a la fois pour le champ de vitesse et le champ d’énergie qui peut étre convenable pour la
fixation de la précision des analyses numériques et approchées.
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LAMINARE WARMEUBERTRAGUNG AN EINEN ABGESTUMPFEN KEIL.

Zusammenfassung— Es wird eine analytische Lésung gebracht, die exakt das Energiefeld in der Grenzschicht
eines abgestumpften Keils bei konstanter Wandtemperatur beschreibt. Fiir das Gebiet der Nase wird
die Losung durch eine Potenzreihe mit der Strémungskoordinate o und K oeffizientenfunktionen dargestelit.
die als Linearkombinationen universeller Funktionen ausgedriickt werden. Fiir die Stromung in grossem
Abstand von der Nase wird eine asymptotische Reihe entwickelt, die Eigenwertbeziechungen enthilt.
Da die Grenzschicht mit einer zweidimensionalen Staupunktsstromung beginnt und sich asymptotisch
einer Falkner-Skan-Stromung mit # = 1 nahert, entspricht die hier dargestellte analytische Losung
einem nichtihnlichen Fall sowohl fiir das Geschwindigkeits- als auch fiir das Temperaturfeld, was fiir
die Abschitzung der Genauigkeit numerischer und augendherter Losungen verwendet werden kann.

JAMUHAPHAA NEPEJAYA TEIIJIA K SATYIIJIEHHOMY HJIUHY

Amnoranua—IllpnBouUTCA pemleHMe B aHAIATHYECKON (OpMe, TOYHO OMMCHIBAKILEE MHOJe
9HEPTHH B NOrDAHMYHOM ClI0e 3ATYIJIEHHOTO KIMHA C IOCTOAHHOHN TEMIIEPATYPON CTEHOK.
B oGxactu HOCOBOH 4acTu, peileHMe BEHIDA)KEHO B BHAE DAfA 110 CTeNleHAM KOOpHMHATA,
OTCYMTHIBAEMAA B HANPABJICHNMM MNOTOKA ¢ (YHKIMAMH KOs(PUIMeHTa, HaK IuHeHHHe
KOMOMHAIMM YHUBEPCATBbHHX (yHrumit. [[ad moToka BEAJM OT HOCOBOM YacTH NOCTPOEH
aCUMOTOTHYECKUM PAJ, CONepaluil TepMEl CO6CTBeHHOTO 3HaYeHHA. TaK KaK MOrpaHUYHBIN
CIIOM BO3BHMKAET B BHjE IIOCKOr0 TedeHMA BOIM3H KPUTHYECKOH TOYKM M MpUOIMAKAETCA
acumnroTnyecknt k moroKky ®oyuarnep-Crana ¢ B # 1, HacTOAmEe AaHAIUTUYECKOE PellleHHe
COOTBETCTBYET HeMoZOOHOMY CIIy4alo Kak JUIA NMOJA CKOPOCTH, TAK U JJIA MOJA SHEPTHM, YTO
MOeT TOJOMTH [N OIeHKH TOYHOCTH YMCJIOBOTO M NMPUOIMMEHHOIO aHAJIMA0B,
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