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LAMINAR HEAT TRANSFER TO A BLUNTED WEDGE* 
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Abslract-An analytic solution which describes accurately the energy field in the boundary layer of a 
blunted wedge with constant wall temperature is provided. For the nose. region, the solution is represented 
by a power series in the streamwise coordinate u with coeficient functions expressed as linear combina- 
tions of universal functions. For flow far from the nose, there is constructed an asymptotic series which 
contains eigenvalw terms. Since the boundary layer originates as a two-dimensional stagnation-point 
flow and approaches asymptotically a Falkner-Skan flow with B # 1, the present analytic solution cor- 
responds to a nonsimilar case for both the velocity and energy field which may be suitable for the assess- 

ment of the accuracy of numerical and approximate analyses. 

NOMENCLATURE 

the radius of the blunted nose; 
the ratio of density viscosity product, 

c = W/P&; 

6, 

47 

modified stream function such that h 

f, = u/u,; i, 

Gijertler’s universal functions; 
the coefticient functions of the power 
series for f; 
the coefficient functions of the asympto- 
tic series for f ; 

the ratio of stagnation enthalpy, g = 

h$k,,; 
normalized stagnation enthalpy, g = 

(9 - &J/U - &VI; 
universal functions for the energy 
equation ; 
the coefficient functions of the power 
series for g ; 
the ratio of stagnation enthalpy after 
Euler transformation ; 

U, 

v, 

V, 

w, 

X 

x, 

r: 

Y, 

Z, 
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the coefficient functions of the power 
series for G ; 
the coeficient functions of the asympto- 
tic series for g ; 
stagnation enthalpy ; 
the constants in front of the eigenvalue 
terms of the asymptotic series for S; 
eigenfunction for energy equation ; 
eigenfunction for velocity equation ; 
normal coordinate ; 
streamwise coordinate ; 
the constants in front of the eigenvalue 
terms of the asymptotic series for Q; 
velocity component in the streamwise 
direction ; 
velocity component in the normal direc- 
tion ; 
a constant to normalize the velocity of 
inviscid flow ; 
transformed streamwise variable after 
Euler transformation ; 
the real part of Z, cf. Fig 1; 
the real part of z, cf. Fig, 1; 
the imaginary part of Z, 6. Fig 1; 
the imaginary part of z, cf. Fig. 1; 
complex variable before conformal map 
ping, cf. Fig. 1; 

573 
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4 complex variable after conformal map- 
ping, cf. Fig. 1. 

Greek symbols 
8, pressure gradient parameter, 

B = (2s/u,) (d~~fds) ; 
fi,_ the coe~~~en~ of the power series for /? ; 

Y “3 eigenvalues for the energy equation ; 

% transformed normal variable, cf. equa- 
tion (7); 

L RY eigenvalues for the velocity equation ; 

PL, viscosity coefficient ; 

5, the imaginary part of <, cf. Fig. 1; 

PI density ; 

@r transformed streamwise variable, cf. 
equation (3); 

% intermediate complex variable during 
conformal mapping, cf. Fig. 1; 

% the real part of c, cf. Fig. 1. 

Subscripts 
e, refers to the conditions in the external 

flow ; 
W. refers to the conditions at the body 

surface ; 

0, refers to quantities near the stagnation 
point; 

OS, refers to quantities far from the stagna- 
tion point. 

1. INTRODUCTION 

LAMINAR flows in which the velocity and energy 
distributions are described by similar solutions 
can be computed with great accuracy in terms 
of numerical solutions to a set of ordinary 
differential equations. Mom general, nonsimilar 
flows are described by partial differential equa- 
tions which may be solved by various methods 
with various degrees of accuracy. At one end 
of an accuracy spectrum we have direct nu- 
merical integration which in principal is exact 
and at the other end we have momentum 
integral methods; series and other methods are 
intermediate thereto. It would be convenient 
to have analytic solution of high accuracy to 
r>rovide gages against which the accuracy of 

various methods can be judged. This point of 
view has been exploited for velocity distribu- 
tions in laminar boundary layers by Van Dyke 
[l] who provides such a solution for the flow 
about a parabolic slab and by Chen et al. [2], 
who provide such a solution for the flow about 
a blunted wedge. 

Our purpose here is to present an accurate 
solution to the energy distribution for the case 
of the blunted wedge treated in [2]. The velocity 
dist~bution is therefore assumed given by [2] 
and we-need present here only those aspects of 
direct relevance to our calculation of the energy 
distribution. 

The boundary layer on the blunted wedge 
starts from a two-Dimensions stagnation point 
(fi = 1) and accelerates in the streamwise direc- 
tion so as to approach a constant fi # 1 de- 
pending on the wedge angle. Thus the initial 
and asymptotic solutions for both the velocity 
and energy distributions are similar. At inter- 
mediate stations we are clearly dealing with a 
nonsimilar flow. The flow may be considered 
to be either incompressible or compressible but 
adia~ti~ with unity Prandtl and Lewis n~bers, 
or more particularly with a nearly constant 
stagnation enthalpy and composition. Although 
our solution is for constant wall temperature, 
the approach may be readily extended to the 
ease of a variable wall temperature. 

We carry out two separate calculations, In one 
we extend the Giiertler series method [3] to 
the solution of the energy equation near the 
sta~ation line. In the second we assume this 
series solution has been extended sufficiently 
downstream so that an asymptotic solution 
based on the eigenfunctions of Chen [4] may 
be applied to give the approach to the far 
downstre~ similar solution. 

2. ANALYSJS 

Consider a steady laminar flow at a high 
Reynolds number. For simplicity let the flow be 
incompressible, passing a semiinfmite, sym- 
metric, blunted wedge with constant wall tem- 
perature. 
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FIG. 1. Generation of the inviscid flow past the blunted wedge by conform1 mapping (from [2]). 

The imiscidf2ow flows varies with CT. Equations (2) and (3) lead 
For completeness we review briefly the to the simple relation between (z and {, namely, 

analysis of [2] proving the description of the 
inviscid flow which is found by the conformal Q = (1 - ~~~(~2/2}, (4) 

mappings sketched in Fig 1. The S-z transforma- and thus to 
tion involves the parameter 8, which cor- 
responds to the usnal Fahcner-Skan parameter 8 

1 f 89)C2 
= l+l2’ (5) 

for wedge flows (cf. ~~~h~g [5 J). For /I_ = 0 
the wedge degenerates to a parabolic body (cf. 
Van Dyke Cl]), the numerical analysis per- The boundary layer equations 

taining to the boundary layer will be carried The momentum and energy equation for the 

out below for 8, = $, i.e. for a blunted wedge boundary layer with the ratio of density viscosity 

with a 45” half-angle. product C 5 (p&p& = 1 and the Prandtl 

The velocity on the surface u, is found to be number Pr = 1 can be written as 

given by f**, +& f &~)(l - S:) = 2~(&f’ -&SW) (6) 
u, = V&l + <q-+-fl,q (1) subject to the boundary conditions 

The distance aIong the surface from the x-axis 
is also found to be expressed in terms of r in 
the differential form 

!$ = (1 - 8,) a(1 + #’ -fim@. 
and 

(2) 

For the boundary-layer calculation we shall with 
introduce a transformed streamwise coordinate 
e related to s according to 

0 = (I’@-‘iu,ds 
where 

(3) 

and the usual Falkner-Skan p~ssu~~~ient 
parameters B = ~2~/~~(du~d~) which in these 

fh 0) = f&s, 0) = 0 

f&5 00) = 1 

&f + faf = M&#@ - f&lJ (7) 

$%A 01 = 4 &,co) = 1 
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and j, is the ratio of streamwise velocity com- In the region near the stagnation point, we 
ponents, uju, express /I, .f and g as the series in cs such that 

The heat transfer rate at wall can be cal- 
culated from the value of (@,J,,, which we shall 
use as the measure of the accuracy achieved 
in the subsequent calculation. 

Series s&d.m for rwse region* 
At the nose of the wedge, say s = 0, we have 

a two-dimensional stagnation point and the 
velocity and energy fields are described by the 
similar solutions offa and Q. satisfying 

fb” +f*f;; + (1 -f&3 = 0 (8) 

with 

fo@) = f b(o) = 0, f b(cxJ) = 

and 

& -t-f& = 0 (9) 

with 

where P,,‘s can be obtained from equation (5) 
for the numerical analysis carried out below, 
and fn’s can be expressed in terms of the given 
fin coeffkient and of the Gktler’s universal 
functions f. . . (cf. 131) that 

fi = Plf, 

J; = a% -t- PA 

MO) = 0, &A(=) = 1. + i&j’,. 
substitution of equations (12) and (13) into 

The numerical solution of equation (8) can equation (7) leads to a hierarchy of equations 
be found, e.g. in [S] yielding the wall value for the g,, functions. If, as an abbreviation, we 
f:(O) = 1.2326, while the solution of equation define the differential operator 
(9) can be expressed in an integral form, 

Lk(s) = @” + fO@’ - 2kfb@* 

we have the following equations for the func- 

(10) 
tions gn, 

&(@I) = -3fi& 

M@zf = -3fis; - Y&l + 2%@1 

which gives @e(O) = OCI7047. 

---_- - -- -_ 
* A reviewer pointed out that Froessling [6] and Tifford 

[7j have constructed the- universal functions of the tempera- 
ture field in the physical coordinates s and n, which can be 
considered as an extension of Blasius series (cf. Schlichting 
[S]). Though we would expect to be able to convert the 
numerical values of the universal functions of Blasius 
series to those of the Giiertler series, the labor to do so 
leads us to prefer our present, direct calculation in o. q 
variables. The boundary layer equations in o and q variables 
can cover more cases, e.g. axi-symmetrical flow, adiabatic 
compressible flow and so on. 

Jx@3) = -3-19; -5f2@\ - 7f3& 

-t 4f;sz f 2fk@, 

L&4) = -3f;g; - vi@; - 7&g; (1% 

- 9h& + 6f ;@a + Y ;92 + 2f ;@I 

J&9,) = -3f1sk - 5fi@> - 7f3@; 

- 9i:29; - flf596 + 8f;sh + 6f;@3 

+ 4jlrf;gz + ?fk@I. 

Following the same approach as Giiertler [3], 
we express the g,, functions in terms of a series 
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of universal functions which are defined as We have the same boundary conditions for all 

follows 4 ..a, namely 

91 = BIDI 
~...(O)=~...(co)=O. 

g2 = ml + A& 
The numerical technique used to solve equations 

93 = s:&lI Jr ~~~~~~2 + B13 

in (17) is essentially the same as that used by 
G&tier [3f. A brief outhne is given here. Let 

94 = 8:&111 + #z&L12 + 8183&3 (16) 

+ ia%2 + 8484 

Q . . , = c!? . * . ds) f 8. . . p(v), 

g5 = B:O,,III + a:/Q111, 
where 4, . . p satisfies 

f 833~1113 + S&Sm 
MO * . ’ ,) = 0, 

+ ~~~~~~ + 8&&?3 f 8505* 

$2...,(O) = 0, 4, f . i(O) = 1; 

Su~titution of (14) and (16) into (15) leads to Q * ’ f P 
satisfies 

the following differential equations for the Lk(& * * *p)=R... 

functions 4. . (q). 4 . . ,(O, = 4. . . $0, = 0 

ic = 1: IL,@,) = -33& 

k = 2: -UQ11) = -3314 - 53;& -I- 23;@, 

L&2) = -5$&J 

k = 4:f&1111) = -331&r, - 531,& - 731d; - 93m& + 63;h + 43‘;,&, + 23;,,& 

L@llZ) = -33&z - 53f& - 532&I - 7j;,& - VlIZs6 + 63& + 43;,$?, 

L4(&3) = -33l& - V& - %3&I + 63% + 2381 + 43211 + &2A 

L&2) = -5325% - 9~2i%l + 4f;& 

L&4) = -%&I 

L&ix) = -33%~ - 53% - 73L& - 93s,& - l13rzz&, + 83;g,, + 63;&, 

L&M) = -33~9; - 93% - 11&&a + 83;& + 23:&r 

k&L,) = - 5j42& - 733& - 113z390 + 6393 -t 43;& 

MM = - ll&% (17) 
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with R.. . , the forcing function of the cor- 
responding equation in (17) ; and C is a constant 
to be determined from the boundary condition 
that 

0 = 3.. . (co) = cg.. .&co) + 8.. . ,(cG). 

Extensive tables of these g. . (q) functions 
for gn, where n = 1,2,3,4 and 5, were calculated 
and are available upon request from the author. 
In the present paper, we list only the numerical 
values of 4’ . . (0) in Table 1. 

Table 1. The numerical values of 3, ‘(0) 
--- ---.__-_ ~~ _~ -._-- ____ 

..,. s^. ‘(0) 4. ‘(0) 

0 

2 
11 

3 
12 

111 
4 

22 
13 

112 
1111 

--__ ___I_ 

0.57047 5 006030 
0.06219 23 - 0.02600 
0063 54 14 - 0.02721 

-0.01669 122 0.01319 

0.06283 113 0.01360 
- 0.03083 1112 - OQO767 

0.00550 11111 OOQO96 
0.06162 

-0.01398 
- 0.02884 

0.01477 
-000215 

Since from our wedge flow the coefficients 
j?,, are known from (S), we may compute the 
first 5 gn functions from (16) and from (13) 
the stagnation enthalpy in the boundary layer 
to some finite 0, less than the radius of con- 
vergence of the series in G and determined by 
the selected accuracy requirements on some 
boundary layer property, e.g. on (gJW 

Extending the series solution 
In order to extend the radius of convergence, 

as well as to increase the accuracy of the series, 
we recast the series in (13) by means of the 
Euler transformation Introducing w = a/(s + a) 
so that #(rr, q) becomes G(w, u) where 

Gl = 491 

G, = 491 + q2g2 
G, = w1 + q2 + q3g3 
G = 491 + 3q2g, + 3q3g, + q4g4 

G, = 491 + 4q2g, + 6q3g, + 4q4g, 

(19) 

+ 4*9s. 

The determination of the value of q is ambiguous : 
e.g. it may be selected in such a way that the 
series in (18) converges as fast as possible, e.g. 
[9]. It may also be determined on the basis 
of an estimation of the radius of convergence 
of the series. With q selected we may in some 
cases employ the technique of Shanks [lo] for 
accelerating the convergence of a sequence of 
partial sums. 

Asymptotic series for the stagnation enthalpy 
jclr downstream 

In order to examine how the stagnation 
enthalpy will approach a similar solution as 
Q --f cc, asymptotic expansions to the solutions 
of equations (6) and (7) with respect to large 0 
are employed. The asymptotic expansion to 
equation (1) has been presented in [2] as 

Sb r) - f (4 f F,(Qw + K1Nl(q)o-““2 
i F2(q):-’ + X2N,(q)a- azI2 

+ Gll(yI)(T-(1+A1’2) $ F3(y)o-3 + (20) 

where f, is the solution of Falkner-Skan equa- 
tion with pa, zz j(co). In a similar manner we 
write the asymptotic expansion to equation (7) 
as 

g(s, q) - gm -t TlM16-y1’2 + Gqq)a- 1 
+ Cl& ,2c+1’2 + Tl~(n,,2)+,o-(1+~“2’ 

-I- ‘T2M20-“!2 f e2(Y&F2 + . (21) 

G(w lit) = &h) + ,& w”‘ZM (18) Substitution of equations (20) and (21) into 
equation (7) and collection of like powers of 



LAMINAR HEAT TRANSFER TO A BLUNTED WEDGE 579 

0 yield the sequence of equations 

sbb + f&b, = 0 

with g,(O) = 0, g,(a) = 1; 

M;’ + f,M; + yl_f ‘,M, = 0 

with M,(O) = M,(a) = 0; 

G;I + f&, = Fig’, 

with e,(O) = %,(a~) = 0; 

Q,,z + “f&,,, + 4f',G,,,! 
=(A, - 

with G,,,,(O) = G,,,,(a) = 0. 

The first function g, can be expressed in an 
integral form as in il%) with the substitution of 
f,, for f. The second function Ml is the first 
eigenfunction in [4] with f = f,. Substitution 
of F, = (:>(l - pm)‘. (qf b, - f,), as it is indi- 
cated in r21 into (22) leads to an exact solution 
for G,, i.e. e, = t(l - /3,)‘qg’,. As to the 
fourth function G11,2, we cannot find a general 
.exact solution except for /3,. = 0. In this special 
case, we have A1 = 0 and N,(q) = (qf b, - 
f,Yf 'L,(O) so that 6:rl,,z = qg',/f z(O). HOW- 
ever we can find solutions for other functions in 
(21) numerically in a straightforward manner. 
The constants T,, T,, . . . , in (21) depend upon 
the details of the flow near the nose as discussed 
below. 

3. NUMERICAL RESULTS FOR 8, = 4 

Consider a blunted wedge of 45” half-angle, 
i.e. /?, = i. From the substitution of numerical 
results in Table 1 to equations (16) and (13), 
we find 

&,(s, q) = 057047 - 0.12438a + 04415902 

- 1.56145a3 + 5.584510~ - 20*217760s.. . . 

(23) 

The next step is to employ the Euler trans- 
formation w = u/(q + a) in order to increase the 
radius of convergence of (23). The appropriate 
value of the constant 4 depends on that radius 

which can be assumed to be or expected to be 
the same with that of velocity filed in [2], i.e. 
q = $. In terms of w, equation (23) becomes 

G&w, 0) = 0.57047 - 0.03110~ - 0-00350~~ 

- 0*OO029w3 + OQO033w4 + 0QO043ws. (23a) 

With w = 1, which corresponds to (r + co, 
equation (23a) gives the sequence of partial 
sums of 

05394 0.5359 0.5356 0.5359 0.5363, 

compared with the exact similar solution for 
c + co, g’,(O) = O-5390 [4]. We thus see that 
the Euler transformation applied to five terms 
of the series solution yields the asymptotic 
value of g;(O) within 0.5 per cent. 

In order to determine the nature of approach 
of g,,(a, 0) to its asymptotic value, we find the 
numerical value of its first 3 terms of (21), i.e. 

&(s, 0) - 0.5390 + TI~-0’*261 + O.O6737a- 1 

+O(a 
-1.546 

). (24) 

The numerical value of Tl can be approximately 
estimated by the consideration of the power 
series (23a) for g,,(c, 0). The procedure in outline 
is as follows: equation (24) can be rewritten 
in terms of (1 - w) as 

(&)w k 0.5390 + 5°‘8261 T,(l - w)“.8261 

+ 0*2695(1 - w) + O[(l - w)“~~‘]. (25) 

Subtraction of equation (25) from equation 
(23a) leads to 

50.8261(_Tl)(1 _ w)0..S261 

=0*2380 - 0.2384~ + 0.00350~~ + 0.00029w3 

+o*OO033w4 + o.00043ws 

+O~OO042w4 + O~OOOIOws. 

Factoring 0.2380 from the right-hand side and 
raising both sides to (0*8261)-l power, we obtain 

5( - T$1.210s(1 - w) 

= (O*2380)“2’os(1 - 1.2125~ + 0.1456~~ 

+ 00314~~ + 0.0117~~ + 0.0056~~ + . . .). 
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We once again rewrite the right-hand side in 
powers of (1 - w) and find 

5( - q)1’z105(1 - w) 

= (O~2380)“2105[(1 - 1.2125 + 0.1456 

+ 0.0314 + 0.0117 + 0.0056 + .) 

+ (1 - wN1.2125 - 0.2912 - 0.0943 - 0.0467 

- 0.0282 - . .) + 0(1 - w)“]. 

The terms in the first 2 coefficients decrease 
faster than l/n*. Applying the summation formula 
of Shanks [lo] to these two coefficients, we 
obtain -0.01 and 0.64. This numerical results 
seems to agree with our expectation that the 
first coefficient indeed converges to zero. There- 
fore, the second coefficient can be employed to 
estimate T,, i.e. 

0.64 0.8261 

Tl = -02380 5 = -@044. 

We thus conclude that the heat transfer rate far 
downstream is given by 

(&)w * 05390 - cJ-@826l + 00674a- 1 

+ 0 (o-l.546). 

We thus see that the series solution developed 
for the nose region, extended by means of the 
Euler transformation, and the asymptotic solu- 
tion far downstream from the nose provide a 
gage for the assessment of the accuracy of 
numerical and/or approximate solutions of the 
energy field on a blunted wedge and comple- 
ment the corresponding solutions for the velocity 
field given in [2]. 

CHEN 
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TRANSPORT DE CHALEUR LAMINAIRE A UN D&DRE ARRONDI 

R&un&Une solution analytique est fournie, qui d&it avec precision le champ d’knergie dans la couche 
limite d’un d&Ire arrondi avec une temp&ature pa&ale constante. Pour la r&ion du nez, la solution est 
rep&en& par une s&ie en puissances de la coordonnQ le long de I’&coulement 0, avec des coefficients 
variables exprimts comme des combinaisons lin&aires de fonctions universelles. Pour l%coulement loin 
du nez, on a construit une strie asymptotique qui contient des valeurs propres. Puisque la couche limite 
commence comme un tcoulement autour d’un point d’arr& bidimensionnel et approche asymptotiquement 
d’un tcoulement de Falkner-Skan avec b # 1, la solution analytique actuelle correspond a un cas en 
non-similitude & la fois pour le champ de vitesse et le champ d’hergie qui peut i%re convenable pour la 

fixation de la pr&cision des analyses numkiques et approchks. 
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LAMINARE WARMEUBERTRAGUNG AN EINEN ABGESTUMPFEN KEIL. 

Zuaunmenfmong- Eis wird eine analytische Losung gebracht, die exakt das Energiefeld in der Grenzschicht 
eines abgestumpften Keils bei konstanter Wandtemperatur beschreibt. Ftir das Gebiet der Nase wird 
die Losung durch eine Potenzreihe mit der Striimungskoordinatea und Koeffizientenfunktionen dargestellt. 
die als Linearkombinationen universeller Funktionen ausgedrtickt werden. Ftir die Striimung in grossem 
Abstand von der Nase wird eine asymptotische Reihe entwickelt, die Eigenwertbeziehungen enthllt. 
Da die Grenzschicht mit einer zweidimensionalen Staupunktsstriimung beginnt und sich asymptotisch 
einer Falkner-Skan-Stromung mit B = 1 nlhert, entspricht die hier dargestellte analytische Losung 
einem nichtlhnlichen Fall sowohl fur das Geschwindigkeits- als such ftir das Temperaturfeld, was fur 

die Abschiitzung der Genauigkeit numerischer und augenlherter Lijsungen verwendet werden kann. 

JIAMBHAPHAH IIEPEAAHA TEHJIA H 3ATYIIJIEHHOMY HJIHHY 

AEEOT~~SI-II~MBOAMTCH pemeurae B aHannTwsecKoB $opMe, TOYHO onucr.rsaroruee none 
3HepruIl B IlOrpaHWlHOM CJlOe 3aTJWleHHOI'O HnElHa C IIOCTOIIHHO~ TeMIlepaTypOft CTeHOK. 
B 06nacTa HOCOBOfi YaCTEI, peUIeHS,Ie BbIpameHO B BIlAe p"Aa II0 CTeIIeHHM KOOpAHHaTa, 
oTc9riTbmaeMan B HanpaBneHaM noToKa c $YHK~KJIME~ Koa@fqaeKTa, KaK naaetiabre 
KOM6HHaIJHM J'HkIBepCaJIbHbIX ~YHK@i. Ana IlOTOKa BAaJIM OT HOCOBOt YaCTEl IIOCTpOeH 
3CllMIITOTH~eCKI%tpFI~,CO~ep~a~SitTepMbICO6CTBeHHOrO 3HaYeHHFI.TaK KBK nOrpaHHYHb& 
CJIOt B03HHKaeT B BHAe IIJIOCKOI'O Te4eHHR B6JI&l3H KpHTHYeCKOti TOYKH I4 npn6namaeTcfi 
aCI4MIITOTlNeCHHfi K IIOTOKJ'@OyJlKHep-CKaHa C fl# 1, HaCTOfImee aHaJIHTR9eCKOe peIUeHMe 
COOTBeTCTBYeT HenOAO6HOMy CJlyYaIO KaK AJIH IIOJIR CKOpOCTk%,TaK II AJIfl IIOJIH3HepI'HH,9TO 

MOXEeT lIOJ(OtiTU AJIR OUeHKli TOYHOCTIl YllCJlOBOrO ii npH6nkfmeHHOPO aHanll3OB. 


